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Abstract 

 Traumatic brain injury (TBI) affects millions yearly, and is increasingly associated with 

chronic neuropsychiatric symptoms.  We assessed the long-term effects of different bilateral 

frontal controlled cortical impact injury severities (mild, moderate, severe) on the five-choice 

serial reaction time task, a paradigm with relatively independent measurements of attention, 

motor impulsivity and motivation.  Moderately- and severely-injured animals exhibited 

impairments across all cognitive domains that were still evident 14 weeks post-injury, while 

mild-injured animals only demonstrated persistent deficits in impulse control.  However, 

recovery of function varied considerably between subjects such that some showed no impairment 

(“TBI-resilient”), some demonstrated initial deficits that recovered (“TBI-vulnerable”) and some 

never recovered (“chronically-impaired”). Three clinically-relevant treatments for impulse-

control or TBI, amphetamine, atomoxetine, and amantadine, were assessed for efficacy in 

treating injury-induced deficits. Susceptibility to TBI affected the response to pharmacological 

challenge with amphetamine.  Whereas sham and TBI-resilient animals showed characteristic 

impairments in impulse control at higher doses, amphetamine had the opposite effect in 

chronically-impaired rats, improving task performance.  In contrast, atomoxetine and amantadine 

reduced premature responding but increased omissions, suggesting psychomotor slowing.  

Analysis of brain tissue revealed that generalized neuroinflammation was associated with 

impulsivity even when accounting for the degree of brain damage.  This is one of the first studies 

to characterize psychiatric-like symptoms in experimental TBI.  Our data highlight the 

importance of testing pharmacotherapies in TBI models in order to predict efficacy, and suggest 

that neuroinflammation may represent a treatment target for impulse control problems following 

injury. 

Keywords: controlled cortical impact; impulsivity; amphetamine; prelimbic; cytokine 
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Introduction 

 Traumatic brain injury (TBI) affects 2.5 million people annually in the United States 

alone, placing estimates for the incidence rate between 12-24% across the lifespan (1).  Although 

the majority of injuries are mild, and patients often recover spontaneously (2), an estimated 1-2% 

of people in the US still live with permanent disabilities from brain injury (3, 4).  TBI is 

recognized as a major environmental risk factor for neurodegenerative disorders such as 

Alzheimer’s disease and Parkinson’s disease (5, 6), and a burgeoning literature is also reporting 

links between TBI and the development of core psychiatric symptoms such as depression, 

suicidality, attention deficits and impulse control problems (7, 8). 

The development of persistent, long-term cognitive deficits is one of the most debilitating 

consequences of TBI.  There are no targeted treatments for TBI-induced psychiatric 

complications, and it is unclear whether drugs prescribed for impulse control and attention 

deficits in non-brain-injured populations are efficacious or even appropriate for TBI patients.  

Notably, drug classes commonly prescribed for impulse control problems, such as dopaminergic 

and noradrenergic agents, have not been tested in this population.  This information vacuum is 

compounded by a lack of experimental animal studies examining either long-term cognitive 

outcomes or the impact of such pharmacological treatments on persistent dysfunction.  Chronic 

pathophysiological changes following TBI, particularly those related to neuroinflammation, have 

been comparatively well-documented, including up-regulation of specific cytokines such as 

interleukin (IL)-1β and IL-6 (9-11).  Although a growing body of evidence indicates similar 

pathways could be implicated in psychiatric disorders (12, 13), the relationship between such 

markers and TBI-induced cognitive impairment remains unclear.   

One barrier to progress in the field has been the strong level of endogenous recovery in 

rat models of TBI on commonly used behavioral assessments such as the Morris water maze that 
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measure primarily hippocampus-dependent spatial memory (14), limiting the study of more 

complex chronic cognitive impairments and necessitating the use of much more severe injuries 

than typically observed in human TBI populations (15, 16).  The bilateral prefrontal controlled 

cortical impact (CCI) model of TBI, though used less frequently due to the more complex 

surgery involved, offers considerable advantages in this regard: it not only leads to enduring 

cognitive deficits, but targets the area of the brain most heavily implicated in psychiatric 

symptoms such as depression, inattention, and impulsivity, while replicating much of the 

pathology observed after unilateral CCI (17-19).  Additionally, the adoption of more complex, 

cognitively-demanding behavioral methodologies, such as those used as standard in the field of 

behavioral pharmacology for assessing models of psychiatric dysfunction, could benefit 

experimental TBI studies (20).  Combining these two approaches may radically improve the 

detection of chronic TBI-induced cognitive deficits, and generate a model with not only stronger 

predictive validity to assess therapeutics, but also a model for evaluating more subtle deficits that 

occur in milder injuries. 

In the current study, we therefore evaluated whether a range of TBI severities centered 

over the frontal cortex affected performance of the five-choice serial reaction time (5CSRT) task 

in rats, a widely-used rodent paradigm with high translational validity that measures an aspect of 

attention and impulse control (21).  We also determined whether any of three clinically-relevant 

drug challenges that have therapeutic value for impulse control (amphetamine, atomoxetine) or 

have been used to treat TBI (amantadine), were effective at remediating post-injury cognitive 

impairment.  Finally, we examined whether the expression of multiple cytokines post mortem 

were associated with lasting deficits in 5CSRT performance. 
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Results and Discussion 

Additional data and analyses can be found in supporting information.   

  

Effect of TBI on 5CSRT performance:  

In the acute phase (days 7-30 post-injury), animals that received a mild, moderate or 

severe TBI were impaired on numerous behavioral measures assessed by the 5CSRT (Figure 2 

and Table S1), and the magnitude of the impairment broadly reflected the severity of impact 

(accuracy: each group was different from every other group, p’s < 0.005; prematures: each 

group was different from every other group, p’s < 0.002, except for the Moderate and Severe 

group, p = 0.644; omissions: each group was different from every other group, p’s < 0.005, 

except for the Sham and Mild group, p = 0.192; task efficacy index: each group was different 

from every other group, p’s < 0.002; see Figure S1, Table S1 and supporting information for 

group differences in total trials, choice and reinforcer collection latencies). 

 Impairment across multiple domains was still evident in the Moderate and Severe groups 

during the chronic phase (day 30 – 104 post-injury), whereas deficits had largely resolved in the 

Mild group with the exception of a strong trend towards increased premature responding (Figure 

2 and Table S1; accuracy: each group was different from every other group, p’s < 0.001, except 

for the Sham and Mild group, p = 0.189; prematures: each group was different from every other 

group, p’s < 0.014, except for the Sham and Mild group, which approached significance, p = 

0.052; omissions: each group was different from every other group, p’s < 0.041, except for the 

Sham and Mild group, p = 0.899; task efficacy index: each group was different from every other 

group, p’s < 0.001, except for the Sham and Mild group: p = 0.115; see Figure S1, Table S1 and 

supporting information for group differences in total trials, choice and collection latencies after 

moderate and severe, but not mild TBI).   
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Regardless of injury severity, some rats demonstrated increased susceptibility to the 

effects of TBI, even in the Mild and Moderate groups (Figure 3A). Rats were reclassified based 

on their behavioral performance as TBI-Resilient, TBI-Vulnerable, and Chronically-Impaired. 

Resilient rats had small, transient deficits in attention and task efficacy, while Vulnerable rats 

demonstrated deficits across all behaviors that recovered over time, but never to baseline levels.  

However, Chronically Impaired rats were only able to regain minor function with substantial, 

enduring deficits across all outcome measures.  (Figure 3 and Table S2; Resilient: impaired in the 

acute phase on accuracy and efficacy index, p's < 0.046, recovered across all variables in the 

chronic phase, p's > 0.186; Vulnerable: impaired on all variables in the acute phase, p's < 0.001, 

only omissions recovered to baseline level in chronic phase, other p's < 0.013; Chronically 

Impaired: impaired on all variables in the acute phase, p's < 0.001 and the chronic phase, p's < 

0.001; see Figure S2, Table S2 and supporting information for additional group analyses). 

 

Effects of amphetamine 

Rats with TBI showed a differential response to amphetamine administration compared 

to shams, suggesting damage-dependent changes in monoaminergic systems.  As expected, sham 

controls became more impulsive and less accurate as the dose increased.  Mildly-injured rats 

were similarly more impulsive, but were still accurate, while moderately-injured rats showed no 

effect of the drug.  In contrast, severely-injured rats showed the opposite behavioral response to 

sham controls, such that these animals appeared less impulsive and more accurate following 

amphetamine administration (Figure 4 and Table S3; accuracy: Group x Dose interaction, p = 

0.009, Sham decreased at 0.6 and 1.0 mg/kg, p’s < 0.013, Mild no change at any dose, p’s > 

0.052, Moderate no change at any dose, p’s > 0.151, Severe increased at 1.0 mg/kg, p = 0.002; 

prematures: Group x Dose interaction, p < 0.001, Sham increased at 0.3, 0.6 and 1.0 mg/kg, p’s 
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< 0.040, Mild increased at 0.3, 0.6 and 1.0 mg/kg, p’s < 0.030, Moderate no change at any dose, 

p’s > 0.128, Severe decreased at 1.0 mg/kg, p = 0.015).  However, there was no significant 

interaction of group and dose on omissions or the task efficacy index; overall, animals made 

more omissions and their task efficacy decreased as dose increased.  Collectively, these analyses 

indicate that the beneficial effects of amphetamine observed in severely-injured rats may be 

mediated by increased omissions, or that there was insufficient power to detect any group-

specific effects in general task efficacy (Figure 4 and Table S3; omissions: Dose effect, p < 

0.001, increased at 1.0 mg/kg, p = 0.004; task efficacy index: Dose effect, p < 0.001, decreased at 

0.3, 0.6, and 1.0 mg/kg, p’s < 0.045; see Figure S4, Table S3 and supporting information for 

analyses regarding dose-dependent effects of decreasing trials, choice and collection latencies). 

Susceptibility to TBI-induced impairments played a significant role in response to 

amphetamine.  Resilient rats demonstrated decreased response efficacy across all doses, similar 

to shams, while the Vulnerable group showed a similar, but blunted response and was only 

significantly impaired at the highest dose.  However, the Chronically Impaired group responded 

in an opposite manner, with increased accuracy, reduced prematures and no decrease in task 

efficacy, suggesting that amphetamine may be a useful therapeutic in this subset of animals 

(Figure 4, Figure S2, Table S4; accuracy: Resilient decreased at 1.0 mg/kg, p = 0.002, 

Vulnerable no effect at any dose, p's > 0.137, Chronically Impaired increased at 1.0 mg/kg, p = 

0.002; prematures: Resilient increased at all doses, p’s < 0.015, Vulnerable increased at 1.0 

mg/kg, p = 0.021, Chronically Impaired reduced at 1.0 mg/kg, p = 0.012; omissions: no Group x 

Dose interaction; task efficacy index: Resilient decreased at all doses, p’s < 0.012, Vulnerable 

decreased at 1.0 mg/kg, p = 0.009, Chronically Impaired no change at any dose, p’s > 0.338).   

  

Effects of atomoxetine 
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Unlike amphetamine, there were no contrasting effects of atomoxetine across injury 

groups.  All animals showed a small, but significant drop in accuracy at the lowest dose as well 

as reduced impulsivity and increased omissions at the highest dose (Figure S5 and Table S5; 

accuracy: Dose effect, p = 0.020, decreased at 0.1 mg/kg, p = 0.049; prematures: Dose effect, p 

= 0.043, decreased at 1.0 mg/kg; omissions: Dose effect, p = 0.003, increased at 1.0 mg/kg, p = 

0.002; task efficacy index: no Dose effect, p = 0.331; see Figure S5, Table S5 and supporting 

information for analyses regarding effects of dose decreasing trials).  There were no differential 

responses to atomoxetine based on injury susceptibility classification. 

 

Effects of amantadine 

 Amantadine had similar effects across both sham and injured animals. In a dose-

dependent fashion, it reduced premature responding, increased omitted trials and had no major 

effect on accuracy, but reduced the task efficacy index, suggesting detrimental effects at higher 

doses.  There was no strong differential response to amantadine in the injured animals, but the 

Moderate group showed a slight sensitivity with increased omissions at the 20 mg/kg dose 

(Figure S6 and Table S6; accuracy: Dose effect, p = 0.039, however, no change compared to 

saline; prematures: Dose effect, p < 0.001, decreased at 20 and 40 mg/kg, p’s < 0.002; 

omissions: Group x Dose interaction, p = 0.013, all groups increased at 40 mg/kg, p’s < 0.011, 

Moderate increased at 20 mg/kg, p = 0.002; task efficacy index: Dose effect, p = 0.001, decreased 

at 40 mg/kg, p = 0.010; see Figure S6, Table S6 and supporting information for analyses of trials, 

choice and collection latencies indicating psychomotor slowing at high doses).  As per 

atomoxetine, susceptibility to long-term cognitive impairments did not lead to a differential 

response to amantadine. 
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Lesion analysis and neuroinflammatory markers 

Lesion formation was tiered based on injury severity.  Cavitation from the anterior 

portion of the brain to the striatum was measured, as well as ventricle enlargement across all 

groups compared to sham (Figure 5A, B; p's < 0.001).  Prefrontal cortical levels of cytokines (IL-

1α, IL-1β, IL-2, IL-4, IL6, IL10, IL-12, TNFα, IFNγ) from a subset of animals (N = 25) 

representing a spectrum of behavioral function were measured using multiplex ELISA.  IL-1β 

and IFNγ fell below detectable levels.  ANOVAs revealed that only IL-12 was significantly 

different across the groups, with increased levels regardless of injury severity (Figure 5F and 

Table S7; F3,20 = 5.46, p = 0.007, Mild and Moderate increased relative to Sham, p’s < 0.041, 

Severe approached significance, p = 0.053).  A correlation matrix examining the relationships 

between the measured cytokines, lesion size, attention, and impulsivity showed significant 

relationships between the various inflammatory markers, as well as significant relationships 

between cytokines IL-1α, IL-6, IL-10, IL-12 and lesion size, attention and impulsivity (Figure 

5C-F; p’s < 0.039; for full correlation matrix see Table S8; for cytokines IL-2, IL-4 and TNFα, 

see Figure S7).   

Given the substantial correlation between cytokines and complexity of cytokine 

interactions, a PCA was conducted to reduce the data and determine common variance.  The 

PCA revealed three primary components, accounting for 95.97% of the variance in the dataset; 

PC1 and PC2 both represented generalized neuroinflammation, with relatively strong, equal 

component loadings (>0.3) for all cytokines, except for IL-12.  In contrast, PC3 was heavily 

dominated by an IL-12 loading (0.93), with weak contributions from other cytokines (Figure S8 

and Table S9). The principal components captured injury-specific effects with unequal 

expression across the groups; the Severe group differed from Sham on PC2, and the Mild and 

Moderate groups showed lower levels of PC3 (Figure 6A-C, Table S12; PC1 F3,21 = 0.45, p = 
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0.719; PC2 F3,21 = 3.89, p = 0.024, Severe decreased relative to Sham, p = 0.014; PC3 F3,21 = 

7.91, p = 0.001, Moderate and Mild decreased relative to Sham, p's < 0.025). In order to 

determine the relative contributions to behavioral dysfunction, the principal components were 

then analyzed, along with lesion size using multiple regression.  Larger lesions were associated 

with lower performance on attention and task efficacy index measures, while both larger lesion 

size and increases in PC2 were associated with increased impulsivity (Figure 6 and Table S10; 

accuracy: lesion, p < 0.001; prematures: lesion & PC2, p’s < 0.037, omissions: no significant 

predictors; task efficacy index: lesion, p = 0.001).  Analysis of TBI susceptibility data revealed 

that lesion size was predictive of degree of recovery for attention, omissions, and the task 

efficacy index, but a model with both lesion size and PC1 better accounted for recovery of 

function in premature responding (Table S10; accuracy: lesion, p = 0.043; prematures: lesion, p 

= 0.043, PC2, p = 0.056, omissions: lesion, p = 0.108; task efficacy index: lesion, p = 0.020). 

 

Discussion 

In this study, we demonstrated that frontal TBI, at multiple levels of severity, resulted in 

substantial, persistent deficits in several domains of function, namely attention, impulse control, 

ability to complete trials, choice and reinforcer collection latencies.  In particular, high 

impulsivity was the most pervasive symptom and persistent elevations in impulsivity were still 

evident over three months post-injury, even in mildly-injured animals.  To our knowledge, this is 

the first study to replicate impulse control deficits often described in patients (7, 22, 23) using an 

animal model of TBI, and our data also reproduce the considerable individual variation in 

recovery trajectory that is observed in human patients.  The unique ability of amphetamine to 

reduce impulsivity and improve attention in chronically impaired animals is of substantial 

clinical interest given the lack of options for treating this population.  Furthermore, the long-term 
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neuroinflammation caused by brain injury was specifically associated with increased impulsivity, 

even when accounting for gross tissue loss.  While long-lasting inflammation has been 

previously identified throughout the brain (9, 11, 24, 25), the present data identified increased 

inflammation in the frontal cortex, and suggest that it may be directly involved in the modulation 

of pro-impulsive behaviors. 

The 5CSRT task is highly regarded for its ability to parse unique domains of cognitive 

function (26).  However, the current study necessitated a novel measure, the task efficacy index, 

in order to capture the extensive nature of the deficits.  This measure is derived from the ratio of 

beneficial actions (correct responses) to detrimental actions (incorrect responses, premature 

responses, omitted responses).  As such, it provides information about how these variables vary 

together, and was useful not only for the ‘big picture’ of injury, but also in evaluating the overall 

effects of pharmacological challenges.  By combining complex behavioral analyses with MRI 

scanning to fully characterize the extent of the lesion, as well as multiple markers of cognitive 

decline, we were able to capture a specific phenotype of chronic impulsive and attentional 

deficits, and evaluate relevant physiological sequelae of TBI. 

One of our most interesting and novel findings is that not all rats responded to injury in 

the same fashion, despite the use of CCI, arguably the most reproducible method of experimental 

TBI (27).  Although deficits were broadly tied to the severity of the impact, several rats within 

the mild and moderate injury groups developed chronic deficits that never fully recovered.  

These differences again reflect similarities to the human condition, in which some patients 

successfully recover with relatively minor interventions while others go on to develop 

debilitating neuropsychiatric symptoms (2).  Although this level of individual variation in 

response to experimental TBI is rarely found or reported, capturing this variance in animal 
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models is critical for the identification of factors that confer vulnerability or resilience to TBI-

induced cognitive impairment, an issue of considerable relevance to therapeutic development. 

A prime example of this can be seen in our own data, in that beneficial effects of 

amphetamine on cognitive function only fully emerged when animals were stratified by their 

level of impairment rather than severity of impact: those that were most susceptible to the 

cognitive sequelae of injury showed improvement, compared to unchanged or impaired 

performance in more resilient groups.  Such a treatment response may indicate that TBI has 

induced a shift in dopaminergic signaling in severely affected subjects (28, 29) that may be 

remediated with psychostimulants.  However, studies in patients have found mixed results with 

administration of methylphenidate (30, 31).  The large-scale disruptions of neurotransmitter 

systems following more severe injuries may also explain why a drug such as amphetamine, 

which has multiple mechanisms of action, may have greater benefits than a more selective 

compound such as atomoxetine which is a relatively selective noradrenaline reuptake inhibitor 

(32).  Although atomoxetine (1.0 mg/kg) was able to reduce premature responding across all 

animals, replicating previous reports (33), this was accompanied by increased omissions.  

Similarly, amantadine, which has been used experimentally in human TBI patients (34) and 

animal models (35, 36), greatly decreased impulsive responses, but this was again confounded by 

psychomotor slowing as evidenced by increased omissions, response latencies and an overall 

decrease in task efficacy.  This study is the first use of amantadine as an acute challenge, and it 

may require multiple doses to achieve efficacy, explaining differences observed here versus 

previous TBI studies (35, 36).  Collectively, such findings highlight the importance of testing 

therapeutic efficacy in an injury model rather than exclusively in healthy rats, and the need for 

further research into which drugs might be uniquely effective in TBI patients.   
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An increased prevalence of pre-morbid behavioral vulnerabilities to TBI is one of the 

hypotheses proposed to explain why some individuals experience worse recovery following an 

injury event (37).  However, in the context of the current study, we were not able to identify any 

pre-existing behavioral traits (e.g. increased impulsivity) predicting susceptibility (Figure 3), 

suggesting that any relationship between prior cognitive function and injury outcome is based on 

environmental, rather than neurobiological, factors.  We did, however, observe changes in 

markers of neuroinflammation in the frontal cortex of injured rats that were associated with 

impairments in impulsivity.  Multiple regression analyses indicated that, while lesion size was an 

important component of attentional impairment and overall task efficacy, this failed to account 

for all of the observed deficits.  Most interestingly, while many specific cytokines were not 

significantly elevated across the groups, changes in generalized neuroinflammation, as identified 

by principal components analysis (PC2), were strongly associated with chronic impulsivity as 

well as the degree of recovery in impulse control.  This underscores the dual nature of the 

inflammatory response to injury - both harmful and beneficial - as emphasized by others (38). 

Neuroinflammation has been implicated in a number of psychiatric disorders in which 

impulsivity is prominent, most notably bipolar disorder and suicidality, but also impulsive 

aggression (13, 39, 40).  Although the relationship between brain injury and the emergence of 

neuropsychiatric symptoms is complex, chronic inflammation may represent a mechanistic link, 

accounting for a portion of the increased susceptibility following TBI.  Further, understanding 

this mechanism could potentially lead to therapeutics aimed at improving long-term dysfunction 

by either augmenting or replacing existing pharmacotherapies.  Drugs such as lithium and other 

glycogen synthase kinase-3 inhibitors are already being explored as potential treatments (41, 42), 

although caution should be exercised as components of the inflammatory response can be 

beneficial to recovery, as seen in the current study.  Of additional interest is the cytokine IL-12, 
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which was highly elevated regardless of injury severity and dominated one principal component 

that accounted for 11% of the variance in all cytokine activity.  Though IL-12 levels were 

significantly correlated with behavioral function, the IL-12-dominated principal component was 

not independently associated with functional outcomes in multiple regression analyses.  IL-12 

has not been shown to remain elevated in previous studies (43, 44), which suggests other sources 

of production beyond the macrophages that are likely responsible for levels acutely after brain 

injury, such as astrocytes or microglia (45).  It would be useful to determine the time-course 

underlying prefrontal IL-12 expression following injury in future studies.  Although 

inflammatory changes are likely occurring throughout the brain in response to prefrontal CCI, 

the 5CSRT is very sensitive to frontal damage, and direct modulation of singular cytokine 

expression within this region has resulted in behavioral change on other cognitive assessments 

that rely on intact frontocortical signaling (48).  As such, inflammatory changes in the PFC have 

a high likelihood of contributing to the impulse control deficits observed here. 

Brain injury is a complex problem, the solution to which has eluded scientists for several 

decades.  The current study integrated several facets of TBI relevant to the human condition: 

multimodal cognition, relevant therapeutics, and measurement of long-lasting changes in 

cytokine levels at the site of impact.  By using a clinically-relevant behavioral task, we were able 

to demonstrate a phenotype of impaired attention and increased impulsivity, which can now be 

used to answer numerous questions regarding the development of chronic deficits in brain injury.  

Our data highlight the potential for monoaminergic therapies to alleviate behavioral dysfunction 

in the most severely impaired, and emphasize the need to evaluate therapeutic agents in special 

populations.  Finally, we have also identified that the neuroinflammatory response is specifically 

implicated in increased impulsivity post-injury, and that this may explain some of the individual 

differences in neurocognitive response to TBI.  Further work targeting these pathways may yield 
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therapeutic agents that can improve the lives of the millions living with cognitive disabilities due 

to brain injury. 
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Materials and Methods 

Further details of experimental procedures, including apparatus, surgery, behavioral 

manipulations, MRI scanning, tissue collection, ELISA, and statistical analyses can be found in 

the supporting information.  The experimental timeline can be found in Figure 1. 

 

Subjects 

 Subjects were 50 Long-Evans male rats, approximately 2.5 months old at the start of the 

experiment and 6 months old at surgery.  Rats were food restricted to 85% free-feeding weight 

(14-20g chow daily); water was available ad libitum.  Rats were pair-housed on a reverse light 

cycle in standard cages during training and single-housed following surgery.  A plastic hut and 

paper towel were available as enrichment.  Housing and testing were performed in accordance 

with the Canadian Council on Animal Care and all procedures were approved by the University 

of British Columbia Animal Care Committee. 

 

Behavioral Training 

 5CSRT task training followed previous methods (21, 49).  Rats were trained to initiate a 

trial with a nose poke to the food hopper.  Then, after a 5 s delay, a brief (0.5 s) stimulus light 

would be presented in one of the five response holes.  A correct response—a nose poke into the 

illuminated hole—was reinforced by delivery of a sugar pellet, whereas a response in any other 

hole, or a failure to respond within 5 s, was scored as incorrect or as an omission, respectively, 

and punished by a 5-sec time-out.  Premature responses made before the stimulus light came on 

provided a measure of motor impulsivity and were also punished with a 5 s timeout.  There were 

a maximum of 100 trials per session and premature responses did not add to the total trial count 

(see Figure 1).   
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Surgery 

 Animals received either a single bilateral frontal CCI surgery or sham procedure as 

previously described (17, 50, 51).  After a 6.0 mm diameter, circular craniotomy was performed, 

all injuries were induced with a circular, 5 mm diameter, flat-faced tip centered over the medial 

prefrontal cortex (AP +3.0, ML 0.0 from bregma).  Once 5CSRT behavior was deemed 

statistically stable, animals were divided into groups matched for baseline performance and 

assigned to one of four surgical conditions (see Figure 1): severe TBI (n = 12): impact depth DV 

-2.5 mm @ 3 m/s for 0.5 s, as per previous work (50); moderate TBI (n = 13): impact settings 

2/3 of severe, DV -1.7 mm @ 2 m/s for 0.5 s (force = 44.4% of severe); mild TBI (n = 15): 

impact settings 1/3 of severe, DV -0.8 @ 1 m/s for 0.5 s (force = 11.1% of severe); Sham (n = 

10) surgeries followed an ‘intact sham’ procedure with no craniotomy, as recently recommended 

for maximal translational validity (52, 53).   

 

Behavioral assessment 

 After seven days recovery, 5CSRT testing resumed.  Rats were assessed for TBI-related 

deficits until all groups showed statistically stable performance (20-25 consecutive sessions of 

testing, approximately 4 weeks post-injury), before pharmacological challenges began.  Baseline 

testing continued between days of drug administration and during washout weeks.  Testing 

continued to 15 weeks post-injury. 

 

Pharmacological challenges 

 Doses of each drug were administered according to a Latin square design (8 sequences, 

counterbalanced) with one day of washout (no behavior) and one day of baseline performance 
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between each dose, and one week of baseline sessions between each drug.  All drugs were 

prepared fresh daily, dissolved in 0.9% sterile saline and administered at a volume of 1 mL/kg, 

i.p.  The assessed drugs were amphetamine (0.0, 0.3, 0.6 and 1.0 mg/kg doses, 10 min prior to 

testing, sourced from Sigma; (54)), atomoxetine (0.0, 0.1, 0.3 and 1.0 mg/kg doses, 15 min prior 

to testing, sourced from Tocris; (55)), and amantadine (0, 10, 20, 40 mg/kg doses, 15 min prior 

to testing, sourced from Sigma, dosing based on (35)). 

 

Structural MRI scanning & lesion quantification 

 Following behavioral assessment (15 weeks post-injury), rats underwent structural MRI 

scanning in a 7T MRI.  Remaining brain volume, ventricle and lesion size were quantified using 

T2-weighted image slices taken in 0.5 mm increments from +6.0 to -2.0 mm from bregma using 

ImageJ (NIH, Bethesda). The slice areas were multiplied by their thickness (0.5 mm) and 

summed across the entire range in order to generate a volumetric measurement as per the 

Cavalieri method (56). 

 

Post mortem analysis of cytokine levels 

 Samples from the orbitofrontal and medial prefrontal cortex were collected at 15 weeks 

post-injury and analyzed for IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL12, TNFα, and IFNγ via 

multiplex ELISA (Quansys Q-plex, Logan, UT). 

 

Injury susceptibility determination 

Due to considerable variation in post-injury performance, particularly in the mild and 

moderate groups, all injured rats were also re-categorized in terms of susceptibility to TBI-

induced cognitive impairment as either Resilient (<5 weeks to recover), Vulnerable (5-14 weeks 
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to recover) or Chronically Impaired (never recovered) and data reanalyzed.  Recovery was 

designated as performance within 3 standard deviations of individual baseline task efficacy 

index, which corresponded to the average variability in the sham animal population. 

 

Data analysis 

 As per previous 5CSRT studies, the following behavioral variables were analyzed: trials 

completed, percent accuracy [correct / (correct + incorrect)*100], percent premature responses 

[(prematures / initiated trials)*100], percent omissions [(omissions / trials completed)*100], 

latencies to make a correct response and to collect the reinforcer.  We also computed an 

additional task efficacy index [correct / (incorrect + omissions + prematures)] to capture the 

cross-variable nature of the deficits induced by TBI.   

 Repeated measures data (behavioral outcomes, pharmacological challenges, 

cytokine/lesion regressions) were analyzed with linear mixed effects regression; univariate data 

(cytokine levels) were analyzed using ANOVA and a Tukey posthoc test where appropriate; and 

relationships between variables were analyzed with correlations (cytokines and steady-state 

behavioral data) and principal components analysis (PCA; cytokine levels).  All data were 

analyzed using R statistical software (http://www.r-project.org/) with the lme4, lmerTest and 

stats libraries.  A p-value equal to or less than 0.05 was considered significant.  For more details 

on data analyses, see supporting information. 
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FIGURE CAPTIONS 

Figure 1.  Study overview, including injury location, experimental timeline and five-choice 

serial reaction time (5CSRT) task description.  A) Injury coordinates in stereotaxic space.  

Injuries were centered on the midline at +3.0 mm from bregma.  Severe injuries impacted to a 

depth of -2.5 mm at 3 m/s, moderate injuries were -1.7 mm at 2 m/s (44% of severe force) and 

mild injuries were -0.8 mm at 1 m/s (11% of severe force).  Adapted from Paxinos and Watson’s 

The Rat Brain in Stereotaxic Coordinates, 4
th

 ed.  B) Experimental timeline showing when 

training, assessment, pharmacological challenges and end points occurred.  C) Task diagram for 

the 5CSRT task.  After initiating a trial by making a nose poke response at the illuminated food 

tray, rats must wait 5 s for the brief stimulus light to appear at one of the five holes.  Once that 

occurs, a nose poke at the correct hole is reinforced with a 0.45 mg sugar pellet.  Incorrect or 

omitted responses are punished with a 5 s time-out in which the houselight comes on and no 

pellets may be earned.  Responses made prematurely at the 5-hole array, before the stimulus light 

appears, are also punished with a 5 s time-out.  Correct responses provide a measure of attention, 

and premature responses provide a measure of motor impulsivity.  Latencies to make a choice 

and to collect the reinforcer were also recorded. 

 

Figure 2.  Effects of injury on 5CSRT performance at acute (week 2-5) and chronic (week 5-14) 

time points.  Deficits in all domains were tiered by injury severity.  A) Mild-injured rats 

demonstrated significant acute deficits in attention (p = 0.004) which recovered over time (p = 

0.189), while moderate- and severe-injured rats had significant acute (p < 0.001; p < 0.001) and 

continuing chronic deficits (p < 0.001; p < 0.001).  B) Mild-, moderate- and severe-injured rats 

showed increased impulsive responding in the acute period (p = 0.001; p < 0.001; p < 0.001), 

which remained elevated throughout chronic testing (p = 0.052; p < 0.001; p < 0.001).  C) Mild-
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injured rats had no significant change in omitted trials (p = 0.192; p = 0.899), yet moderate- and 

severe-injured rats showed increased omissions at both the acute (p < 0.001; p < 0.001) and 

chronic (p < 0.040; p < 0.001) time points.  D) Mild-injured animals were initially impaired in 

overall task efficacy (p = 0.001), but recovered during chronic testing (p = 0.115), while 

moderate- and severe-injured animals demonstrated initial deficits (p < 0.001; p < 0.001) lasting 

into the chronic period (p < 0.001; p < 0.001).  Data shown are mean + SEM. 

 

Figure 3.  Individual differences in 5CSRT performance and response to brain injury at acute 

(week 2-5) and chronic (week 5-14) time points.  Although sham data is shown for reference in 

panel C, only injured rats were included in analyses.  A) Independent of injury conditions, rats 

were categorized as “resilient” if they recovered within 5 weeks, “vulnerable” if they recovered 

by the end of testing (14 weeks), or “chronically impaired” if they never recovered.  B) Resilient 

rats showed acute reductions in task efficacy (p = 0.032) which resolved over time (p = 0.940), 

while vulnerable rats had continuing deficits despite their recovery (p < 0.001), and chronically 

impaired rats had unrecovered deficits (p < 0.001).  C) The left side of the panel shows raw data 

for each subject in terms of standard deviations from baseline performance (overall task 

efficacy), while the right side shows regression fits.  Recovery was defined as within 3 standard 

deviations of (individual) baseline performance (dashed lines).  Rats in each injury group show a 

highly variable response to brain injury.  D) Resilient rats demonstrated acute deficits in 

attention (p = 0.045), which quickly recovered to baseline levels (p = 0.770), while neither 

vulnerable nor chronically impaired rats fully recovered (p < 0.001; p < 0.001).  E) Resilient rats 

had no change in impulsivity across testing (p = 0.145; p = 0.529), but both vulnerable and 

chronically impaired rats showed increased impulsivity in the acute period (p < 0.001; p < 

0.001), which extended to chronic testing (p = 0.012; p < 0.001).  F) Resilient rats showed no 
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change in omitted trials during acute or chronic phases (p = 0.565; p = 0.186), while vulnerable 

rats showed deficits in the acute (p < 0.001), but not chronic time points (p = 0.445), and 

chronically impaired rats demonstrated increases throughout testing (p < 0.001).  Data shown are 

individual subjects’ data points and group means. 

 

Figure 4.  Effects of amphetamine on 5CSRT performance tiered by injury severity, as 

determined by impact force, vs. injury susceptibility, as determined by trajectory of recovery.  A) 

Severe-injured rats had improved attention at 1.0 mg/kg (p = 0.002), moderate-injured rats 

showed no change at any dose (p’s > 0.151), mild-injured rats approached impairment at 1.0 

mg/kg (p = 0.052) and sham rats were impaired at the 0.6 or 1.0 mg/kg (p = 0.009; p = 0.012).  

B) Severe-injured rats exhibited reduced impulsivity at 1.0 mg/kg (p = 0.015), moderate-injured 

rats showed no change across doses (p’s > 0.128), while impulsivity increased in both mild-

injured and sham rats at all doses compared to saline (p’s < 0.040).  C) Overall, omissions 

increased at the 1.0 mg/kg dose (p = 0.004).  D) In general, rats showed reduced task efficacy at 

all doses (p’s < 0.045).  E) Susceptibility subgroups demonstrated differential effects, with 

resilient rats showing reduced accuracy at 1.0 mg/kg (p = 0.002), vulnerable rats showing no 

change at any dose (p’s > 0.137), and chronically impaired rats showing improved function at 1.0 

mg/kg (p = 0.002).  F) Subgroups also demonstrated similar effects with regards to impulsivity 

with resilient and vulnerable rats showing increased impulsivity as a function of increasing dose 

(p’s < 0.021) and chronically impaired rats demonstrating reduced impulsive responding at the 

1.0 mg/kg dose (p = 0.012).  Data shown are mean + SEM and individual data points in panels E 

and F, * = p < 0.05, ** = p < 0.01, ***= p < 0.001. 
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Figure 5.  Histological and immune markers and their relationship to functional outcome.  A) 

Lesion cavitation and ventricle size were significantly increased in a severity-dependent manner 

(p’s < 0.001).  B) MRI histoplate demonstrating representative brains from each group.  Minor 

cavitation was evident in mild-injured rats, with increasing damage and ventricular enlargement 

visible in moderate- and severe-injured rats.  C) There were no group differences in IL-1α levels 

(p = 0.307), however, IL-1α was significantly correlated with attention, impulsivity, and lesion 

size (p = 0.003; p = 0.001; p = 0.016).  D) IL-6 levels were not significantly different across the 

groups (p = 0.190), however, they were significantly correlated with attention, impulsivity, and 

lesion size (p < 0.001; p < 0.001; p = 0.008).  E) There were no group differences in IL-10 levels 

(p = 0.172), however, IL-10 was significantly correlated with attention, impulsivity, and lesion 

size (p’s < 0.001).  F) IL-12 levels were significantly increased in mild and moderate TBI groups 

(p = 0.004; p = 0.040), and approached significance for severe (p = 0.053); IL-12 levels were 

also significantly correlated with attention, impulsivity, and lesion size (p = 0.027; p = 0.038; p = 

0.011).  Data shown are mean + SEM in panel A and C-F and raw data points in panels C-F, * = 

p < 0.05, ** = p < 0.01, ***= p < 0.001. 

 

Figure 6.  Comparison of neuroinflammation principal components across injury groups and 

regression analyses of lesion and principal component data and their relationship to behavioral 

outcomes. A) PC1 did not differ across injury groups (p = 0.719).  B) PC2 was significantly 

lower in the severe TBI group (p = 0.014).  C) Both the mild and moderate TBI group had 

significantly lower levels of PC3 (p < 0.001; p = 0.019).  E) Multiple regression revealed that 

lesion size was most strongly associated with accuracy (p < 0.001).  F) A regression with both 

lesion size (p = 0.030) and principal component 2 (p = 0.036) best accounted for premature 

responses.  G) Multiple regression showed that lesion size (p = 0.001) was significantly 
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associated with task efficacy, although with a much poorer model fit compared to other 

measures.  Data shown are mean + SEM in panels A-C, and raw versus predicted data points in 

D-F; the dashed line demonstrates perfect prediction, while the solid line represents the actual 

model, * = p < 0.05, ** = p < 0.01, ***= p < 0.001. 
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Figure 1.  Study overview, including injury location, experimental timeline and five-choice serial reaction 
time (5CSRT) task description.  A) Injury coordinates in stereotaxic space.  Injuries were centered on the 
midline at +3.0 mm from bregma.  Severe injuries impacted to a depth of -2.5 mm at 3 m/s, moderate 
injuries were -1.7 mm at 2 m/s (44% of severe force) and mild injuries were -0.8 mm at 1 m/s (11% of 
severe force).  Adapted from Paxinos and Watson’s The Rat Brain in Stereotaxic Coordinates, 4th ed.  B) 
Experimental timeline showing when training, assessment, pharmacological challenges and end points 

occurred.  C) Task diagram for the 5CSRT task.  After initiating a trial by making a nose poke response at 
the illuminated food tray, rats must wait 5 s for the brief stimulus light to appear at one of the five 

holes.  Once that occurs, a nose poke at the correct hole is reinforced with a 0.45 mg sugar pellet.  Incorrect 
or omitted responses are punished with a 5 s time-out in which the houselight comes on and no pellets may 
be earned.  Responses made prematurely at the 5-hole array, before the stimulus light appears, are also 
punished with a 5 s time-out.  Correct responses provide a measure of attention, and premature responses 
provide a measure of motor impulsivity.  Latencies to make a choice and to collect the reinforcer were also 

recorded.  
Figure 1  
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Figure 2.  Effects of injury on 5CSRT performance at acute (week 2-5) and chronic (week 5-14) time 
points.  Deficits in all domains were tiered by injury severity.  A) Mild-injured rats demonstrated significant 
acute deficits in attention (p = 0.004) which recovered over time (p = 0.189), while moderate- and severe-

injured rats had significant acute (p < 0.001; p < 0.001) and continuing chronic deficits (p < 0.001; p < 
0.001).  B) Mild-, moderate- and severe-injured rats showed increased impulsive responding in the acute 

period (p = 0.001; p < 0.001; p < 0.001), which remained elevated throughout chronic testing (p = 0.052; 
p < 0.001; p < 0.001).  C) Mild-injured rats had no significant change in omitted trials (p = 0.192; p = 

0.899), yet moderate- and severe-injured rats showed increased omissions at both the acute (p < 0.001; p 
< 0.001) and chronic (p < 0.040; p < 0.001) time points.  D) Mild-injured animals were initially impaired in 
overall task efficacy (p = 0.001), but recovered during chronic testing (p = 0.115), while moderate- and 

severe-injured animals demonstrated initial deficits (p < 0.001; p < 0.001) lasting into the chronic period (p 
< 0.001; p < 0.001).  Data shown are mean + SEM.  

Figure 2  
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Figure 3.  Individual differences in 5CSRT performance and response to brain injury at acute (week 2-5) and 
chronic (week 5-14) time points.  Although sham data is shown for reference in panel C, only injured rats 
were included in analyses.  A) Independent of injury conditions, rats were categorized as “resilient” if they 

recovered within 5 weeks, “vulnerable” if they recovered by the end of testing (14 weeks), or “chronically 
impaired” if they never recovered.  B) Resilient rats showed acute reductions in task efficacy (p = 0.032) 
which resolved over time (p = 0.940), while vulnerable rats had continuing deficits despite their recovery (p 
< 0.001), and chronically impaired rats had unrecovered deficits (p < 0.001).  C) The left side of the panel 
shows raw data for each subject in terms of standard deviations from baseline performance (overall task 

efficacy), while the right side shows regression fits.  Recovery was defined as within 3 standard deviations of 
(individual) baseline performance (dashed lines).  Rats in each injury group show a highly variable response 

to brain injury.  D) Resilient rats demonstrated acute deficits in attention (p = 0.045), which quickly 
recovered to baseline levels (p = 0.770), while neither vulnerable nor chronically impaired rats fully 

recovered (p < 0.001; p < 0.001).  E) Resilient rats had no change in impulsivity across testing (p = 0.145; 
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p = 0.529), but both vulnerable and chronically impaired rats showed increased impulsivity in the acute 
period (p < 0.001; p < 0.001), which extended to chronic testing (p = 0.012; p < 0.001).  F) Resilient rats 
showed no change in omitted trials during acute or chronic phases (p = 0.565; p = 0.186), while vulnerable 
rats showed deficits in the acute (p < 0.001), but not chronic time points (p = 0.445), and chronically 

impaired rats demonstrated increases throughout testing (p < 0.001).  Data shown are individual subjects’ 
data points and group means.  

Figure 3  
215x279mm (300 x 300 DPI)  
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Figure 4.  Effects of amphetamine on 5CSRT performance tiered by injury severity, as determined by impact 
force, vs. injury susceptibility, as determined by trajectory of recovery.  A) Severe-injured rats had 

improved attention at 1.0 mg/kg (p = 0.002), moderate-injured rats showed no change at any dose (p’s > 

0.151), mild-injured rats approached impairment at 1.0 mg/kg (p = 0.052) and sham rats were impaired at 
the 0.6 or 1.0 mg/kg (p = 0.009; p = 0.012).  B) Severe-injured rats exhibited reduced impulsivity at 1.0 
mg/kg (p = 0.015), moderate-injured rats showed no change across doses (p’s > 0.128), while impulsivity 

increased in both mild-injured and sham rats at all doses compared to saline (p’s < 0.040).  C) Overall, 
omissions increased at the 1.0 mg/kg dose (p = 0.004).  D) In general, rats showed reduced task efficacy at 

all doses (p’s < 0.045).  E) Susceptibility subgroups demonstrated differential effects, with resilient rats 
showing reduced accuracy at 1.0 mg/kg (p = 0.002), vulnerable rats showing no change at any dose (p’s > 
0.137), and chronically impaired rats showing improved function at 1.0 mg/kg (p = 0.002).  F) Subgroups 

also demonstrated similar effects with regards to impulsivity with resilient and vulnerable rats showing 
increased impulsivity as a function of increasing dose (p’s < 0.021) and chronically impaired rats 
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demonstrating reduced impulsive responding at the 1.0 mg/kg dose (p = 0.012).  Data shown are mean + 
SEM and individual data points in panels E and F, * = p < 0.05, ** = p < 0.01, ***= p < 0.001.  

Figure 4  
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Figure 5.  Histological and immune markers and their relationship to functional outcome.  A) Lesion 
cavitation and ventricle size were significantly increased in a severity-dependent manner (p’s < 0.001).  B) 
MRI histoplate demonstrating representative brains from each group.  Minor cavitation was evident in mild-

injured rats, with increasing damage and ventricular enlargement visible in moderate- and severe-injured 
rats.  C) There were no group differences in IL-1α levels (p = 0.307), however, IL-1α was significantly 

correlated with attention, impulsivity, and lesion size (p = 0.003; p = 0.001; p = 0.016).  D) IL-6 levels 
were not significantly different across the groups (p = 0.190), however, they were significantly correlated 
with attention, impulsivity, and lesion size (p < 0.001; p < 0.001; p = 0.008).  E) There were no group 

differences in IL-10 levels (p = 0.172), however, IL-10 was significantly correlated with attention, 
impulsivity, and lesion size (p’s < 0.001).  F) IL-12 levels were significantly increased in mild and moderate 
TBI groups (p = 0.004; p = 0.040), and approached significance for severe (p = 0.053); IL-12 levels were 

also significantly correlated with attention, impulsivity, and lesion size (p = 0.027; p = 0.038; p = 
0.011).  Data shown are mean + SEM in panel A and C-F and raw data points in panels C-F, * = p < 0.05, 
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** = p < 0.01, ***= p < 0.001.  
Figure 5  
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Figure 6.  Comparison of neuroinflammation principal components across injury groups and regression 
analyses of lesion and principal component data and their relationship to behavioral outcomes. A) PC1 did 
not differ across injury groups (p = 0.719).  B) PC2 was significantly lower in the severe TBI group (p = 

0.014).  C) Both the mild and moderate TBI group had significantly lower levels of PC3 (p < 0.001; p = 
0.019).  E) Multiple regression revealed that lesion size was most strongly associated with accuracy (p < 
0.001).  F) A regression with both lesion size (p = 0.030) and principal component 2 (p = 0.036) best 
accounted for premature responses.  G) Multiple regression showed that lesion size (p = 0.001) was 
significantly associated with task efficacy, although with a much poorer model fit compared to other 

measures.  Data shown are mean + SEM in panels A-C, and raw versus predicted data points in D-F; the 
dashed line demonstrates perfect prediction, while the solid line represents the actual model, * = p < 0.05, 

** = p < 0.01, ***= p < 0.001.  
Figure 6  
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